viernes, 3 de diciembre de 2010

FISICA DE LOS MAREMOTOS TECTONICOS:

Física de los maremotos tectónicos
Los maremotos son destructivos a partir de sismos de magnitud 7,5 en la escala de Richter y son realmente destructivos a partir de 8,3.
La velocidad de las olas puede determinarse a través de la ecuación:
v=\sqrt{2g\cdot h},
donde h es la profundidad a la que se produce el sismo y g, la gravedad terrestre (9,8 m/s²).
A las profundidades típicas de 4-5 km las olas viajarán a velocidades en torno a los 600 km/h o más. Su amplitud superficial o altura de la cresta H puede ser pequeña, pero la masa de agua que agitan es enorme, y por ello su velocidad es tan grande; y no sólo eso, pues la distancia entre picos también lo es. Es habitual que la longitud de onda de la cadena de maremotos sea de 100 km, 200 km o más.
El intervalo entre pico y pico (período de la onda) puede durar desde menos de diez minutos hasta media hora o más. Cuando la ola entra en la plataforma continental, la disminución drástica de la profundidad hace que su velocidad disminuya y empiece a aumentar su altura. Al llegar a la costa, la velocidad habrá decrecido hasta unos 50 km/h, mientras que la altura ya será de unos 3 a 30 m, dependiendo del tipo de relieve que se encuentre. La distancia entre picos (longitud de onda L) también se estrechará cerca de la costa.
Debido a que la onda se propaga en toda la columna de agua, desde la superficie hasta el fondo, se puede hacer la aproximación a la teoría lineal de la hidrodinámica. Así, el flujo de energía E se calcula como:
E= \frac{1}{8} d \cdot g^{\left(3/2\right)} \cdot H^2 \cdot h^{\left(1/2\right)},
siendo d la densidad del fluido.
La teoría lineal predice que las olas conservarán su energía mientras no rompan en la costa. La disipación de la energía cerca de la costa dependerá, como se ha dicho, de las características del relieve marino. La manera como se disipa dicha energía antes de romper depende de la relación H/h, sobre la cual hay varias teorías. Una vez que llega a tierra, la forma en que la ola rompe depende de la relación H/L. Como L siempre es mucho mayor que H, las olas romperán como lo hacen las olas bajas y planas. Esta forma de disipar la energía es poco eficiente, y lleva a la ola a adentrarse tierra adentro como una gran marea.
Cuanto más abrupta sea la costa, más altura alcanzará, pero seguirá teniendo forma de onda plana. Se puede decir que hay un trasvase de energía de velocidad a amplitud. La ola se frena pero gana altura. Pero la amplitud no es suficiente para explicar el poder destructor de la ola. Incluso en un maremoto de menos de 5 m los efectos pueden ser devastadores. La ola es mucho más de lo que se ve. Arrastra una masa de agua mucho mayor que cualquier ola convencional, por lo que el primer impacto del frente de la onda viene seguido del empuje del resto de la masa de agua perturbada que presiona, haciendo que el mar se adentre más y más en tierra. Por ello, la mayoría de los maremotos tectónicos son vistos más como una poderosa riada, en la cual es el mar el que inunda a la tierra, y lo hace a gran velocidad.
Antes de su llegada, el mar acostumbra a retirarse varios centenares de metros, como una rápida marea baja. Desde entonces hasta que llega la ola principal pueden pasar de 5 a 10 minutos, cómo también existen casos en los que han transcurrido horas para que la marejada llegue a tierra. A veces, antes de llegar la cadena principal de maremotos, los que realmente arrasarán la zona, pueden aparecer «micromaremotos» de aviso. Así ocurrió el 26 de diciembre de 2004 en las costas de Sri Lanka donde, minutos antes de la llegada de la ola fuerte, pequeños maremotos entraron unos cincuenta metros playa adentro, provocando el desconcierto entre los bañistas antes de que se les echara encima la ola mayor. Según testimonios, «se vieron rápidas y sucesivas mareas bajas y altas, luego el mar se retiró por completo y solo se sintió el estruendo atronador de la gran ola que venía».
Debido a que la energía de los maremotos tectónicos es casi constante, pueden llegar a cruzar océanos y afectar a costas muy alejadas del lugar del suceso. La trayectoria de las ondas puede modificarse por las variaciones del relieve abisal, fenómeno que no ocurre con las olas superficiales. Los maremotos tectónicos, dado que se producen debido al desplazamiento vertical de una falla, la onda que generan suele ser un tanto especial. Su frente de onda es recto en casi toda su extensión. Solo en los extremos se va diluyendo la energía al curvarse. La energía se concentra, pues, en un frente de onda recto, lo que hace que las zonas situadas justo en la dirección de la falla se vean relativamente poco afectadas, en contraste con las zonas que quedan barridas de lleno por la ola, aunque éstas se sitúen mucho más lejos. El peculiar frente de onda es lo que hace que la ola no pierda energía por simple dispersión geométrica, sobre todo en su zona más central. El fenómeno es parecido a una onda encajonada en un canal o río. La onda, al no poder dispersarse, mantiene constante su energía. En un maremoto sí existe, de hecho, cierta dispersión pero, sobre todo, se concentra en las zonas más alejadas del centro del frente de onda recto.
En la imagen animada del maremoto del Océano Índico (diagrama de la onda) se puede observar cómo la onda se curva por los extremos y cómo Bangladés, al estar situado justo en la dirección.

No hay comentarios:

Publicar un comentario